We apply classical statistical methods in conjunction with the state-of-the-art machine learning techniques to develop a hybrid interpretable model to analyse 454,897 online customers' behavior for a particular product category at the largest online retailer in China, that is JD. While most mere machine learning methods are plagued by the lack of interpretability in practice, our novel hybrid approach will address this practical issue by generating explainable output. This analysis involves identifying what features and characteristics have the most significant impact on customers' purchase behavior, thereby enabling us to predict future sales with a high level of accuracy, and identify the most impactful variables. Our results reveal that customers' product choice is insensitive to the promised delivery time, but this factor significantly impacts customers' order quantity. We also show that the effectiveness of various discounting methods depends on the specific product and the discount size. We identify product classes for which certain discounting approaches are more effective and provide recommendations on better use of different discounting tools. Customers' choice behavior across different product classes is mostly driven by price, and to a lesser extent, by customer demographics. The former finding asks for exercising care in deciding when and how much discount should be offered, whereas the latter identifies opportunities for personalized ads and targeted marketing. Further, to curb customers' batch ordering behavior and avoid the undesirable Bullwhip effect, JD should improve its logistics to ensure faster delivery of orders.
translated by 谷歌翻译
在时间序列分析中,在拟合自回归模型时,必须多次解决卷取普通最小二乘问题,找到一个适当的模型,可以严重影响大数据集的计算时间。最近的两个算法(LSSAR和重复减半)已应用随机数值线性代数(RANDNLA)技术,以将自回归模型拟合到大型时间序列数据。我们调查并比较这两个近似算法的大规模合成和现实世界数据的质量。虽然这两个算法显示了合成数据集的可比结果,但在应用于真实世界的时间序列数据时,LSAR算法似乎更加强大。我们得出结论,Randnla在大数据时间序列的背景下是有效的。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
In this paper, we reduce the complexity of approximating the correlation clustering problem from $O(m\times\left( 2+ \alpha (G) \right)+n)$ to $O(m+n)$ for any given value of $\varepsilon$ for a complete signed graph with $n$ vertices and $m$ positive edges where $\alpha(G)$ is the arboricity of the graph. Our approach gives the same output as the original algorithm and makes it possible to implement the algorithm in a full dynamic setting where edge sign flipping and vertex addition/removal are allowed. Constructing this index costs $O(m)$ memory and $O(m\times\alpha(G))$ time. We also studied the structural properties of the non-agreement measure used in the approximation algorithm. The theoretical results are accompanied by a full set of experiments concerning seven real-world graphs. These results shows superiority of our index-based algorithm to the non-index one by a decrease of %34 in time on average.
translated by 谷歌翻译
This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
Finding and localizing the conceptual changes in two scenes in terms of the presence or removal of objects in two images belonging to the same scene at different times in special care applications is of great significance. This is mainly due to the fact that addition or removal of important objects for some environments can be harmful. As a result, there is a need to design a program that locates these differences using machine vision. The most important challenge of this problem is the change in lighting conditions and the presence of shadows in the scene. Therefore, the proposed methods must be resistant to these challenges. In this article, a method based on deep convolutional neural networks using transfer learning is introduced, which is trained with an intelligent data synthesis process. The results of this method are tested and presented on the dataset provided for this purpose. It is shown that the presented method is more efficient than other methods and can be used in a variety of real industrial environments.
translated by 谷歌翻译
Simulation-based falsification is a practical testing method to increase confidence that the system will meet safety requirements. Because full-fidelity simulations can be computationally demanding, we investigate the use of simulators with different levels of fidelity. As a first step, we express the overall safety specification in terms of environmental parameters and structure this safety specification as an optimization problem. We propose a multi-fidelity falsification framework using Bayesian optimization, which is able to determine at which level of fidelity we should conduct a safety evaluation in addition to finding possible instances from the environment that cause the system to fail. This method allows us to automatically switch between inexpensive, inaccurate information from a low-fidelity simulator and expensive, accurate information from a high-fidelity simulator in a cost-effective way. Our experiments on various environments in simulation demonstrate that multi-fidelity Bayesian optimization has falsification performance comparable to single-fidelity Bayesian optimization but with much lower cost.
translated by 谷歌翻译
Ensemble learning combines results from multiple machine learning models in order to provide a better and optimised predictive model with reduced bias, variance and improved predictions. However, in federated learning it is not feasible to apply centralised ensemble learning directly due to privacy concerns. Hence, a mechanism is required to combine results of local models to produce a global model. Most distributed consensus algorithms, such as Byzantine fault tolerance (BFT), do not normally perform well in such applications. This is because, in such methods predictions of some of the peers are disregarded, so a majority of peers can win without even considering other peers' decisions. Additionally, the confidence score of the result of each peer is not normally taken into account, although it is an important feature to consider for ensemble learning. Moreover, the problem of a tie event is often left un-addressed by methods such as BFT. To fill these research gaps, we propose PoSw (Proof of Swarm), a novel distributed consensus algorithm for ensemble learning in a federated setting, which was inspired by particle swarm based algorithms for solving optimisation problems. The proposed algorithm is theoretically proved to always converge in a relatively small number of steps and has mechanisms to resolve tie events while trying to achieve sub-optimum solutions. We experimentally validated the performance of the proposed algorithm using ECG classification as an example application in healthcare, showing that the ensemble learning model outperformed all local models and even the FL-based global model. To the best of our knowledge, the proposed algorithm is the first attempt to make consensus over the output results of distributed models trained using federated learning.
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译